1. (10 points) If $A \in \mathcal{R}^{n \times n}$ is symmetric and positive definite, show that

$$
\left|a_{i, j}\right| \leq \frac{1}{2}\left(a_{i, i}+a_{j, j}\right)
$$

holds for all $1 \leq i, j \leq n$.
2. (10 points) Let $A \in C^{m \times n}$ with $m \geq n$. Show that $A^{*} A$ is nonsingular if and only if A has full rank.
3. (10 points) Let $A \in C^{m \times m}$, and let a_{j} be its jth column. Prove the following inequality:

$$
|\operatorname{det}(A)| \leq \prod_{j=1}^{m}\left\|a_{j}\right\|_{2}
$$

4. Let

$$
T=\left(\begin{array}{lll}
4 & 1 & 0 \\
1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right)
$$

(a) (5 points) Use Gerschgorin's disk theorem to show that T is positive semidefinite.
(b) (5 points) Without computing the eigenvalues, explain why these eigenvalues are real.
5. Let

$$
B=\left(\begin{array}{lll}
3 & -6 & 41 / 5 \\
0 & 1 & 1 \\
4 & -8 & 63 / 5
\end{array}\right)
$$

(a) (10 points) Find the QR decomposition of B using the Gram-Schmidt orthogonalization process.
(b) (10 points) Write down the unitary Householder reflector matrix that you should multiply against B in order to zero out all but the first entry of its first column.
6. Consider the following linear system,

$$
\begin{equation*}
A \mathbf{x}=F, \tag{1}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{cccccc}
2 & -1 & 0 & \cdots & \cdots & 0 \\
-1 & 2 & -1 & 0 & \cdots & 0 \\
0 & -1 & 2 & -1 & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\cdots & \cdots & 0 & -1 & 2 & -1 \\
\cdots & \cdots & \cdots & 0 & -1 & 2
\end{array}\right]
$$

(a) (10 points) Prove that the $n \times n$ tridiagonal matrix A is symmetric, positive definite (SPD).
(b) (10 points) Let B be a tridiagonal SPD matrix in the form of the matrix A. Prove that the Cholesky factor L of B has nonzero entries only along the main diagonal and the sub-diagonal lines, where $B=L L^{t}$. Give the formula for L.
(c) (10 points) Design an $O(n)$ algorithm to solve the linear system $A \mathbf{x}=F$.
7. (10 points) Let $\mathbf{x}_{j} \in \mathcal{R}^{m}$ be the j-th column of $X \in \mathcal{R}^{m \times n}$ be given. Let $\mathbf{y} \in \mathcal{R}^{m}$ and $\lambda>0$ also be given. Given a vector $\mathbf{w} \in \mathcal{R}^{n}$, define the following function

$$
J(\mathbf{w})=\|X \mathbf{w}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}
$$

where $\|\cdot\|_{2}$ and $\|\cdot\|_{1}$ denote the 2- and 1-norm in \mathcal{R}^{n}, respectively. Letting the i-th component w_{i} of \mathbf{w} vary and the other components of \mathbf{w} be fixed, consider the following one-variable minimization problem reduced from $J(\mathbf{w})$:

$$
\begin{align*}
\min _{w_{i}} f\left(w_{i}\right) & \equiv \min _{w_{i}}\left\|\sum_{j=1}^{n} w_{j} \mathbf{x}_{j}-\mathbf{y}\right\|_{2}^{2}+\lambda\left|w_{i}\right|+\lambda \sum_{j \neq i}\left|w_{j}\right| \\
& =\min _{w_{i}}\left\|w_{i} \mathbf{x}_{i}+\mathbf{r}\right\|_{2}^{2}+\lambda\left|w_{i}\right|+C \\
& =\min _{w_{i}} \sum_{j=1}^{m}\left(w_{i} x_{j i}+r_{j}\right)^{2}+\lambda\left|w_{i}\right|+C \tag{2}
\end{align*}
$$

where $\mathbf{r} \equiv \sum_{j \neq i} w_{j} \mathbf{x}_{j}-\mathbf{y}$ is in \mathcal{R}^{m} with $\mathbf{r}=\left(r_{k}\right)_{m \times 1}$, and $C=\lambda \sum_{j \neq i}\left|w_{j}\right|$. Show that the optimal solution w_{i}^{*} for the minimization problem (2) is given by

$$
w_{i}^{*}=\left\{\begin{array}{ccc}
0 & \text { if } & |a| \leq \lambda \\
\frac{-\lambda+a}{b} & \text { if } & \frac{-\lambda+a}{b}>0 \\
\frac{\lambda+a}{b} & \text { if } & \frac{\lambda+a}{b}<0
\end{array}\right.
$$

where $a=-\sum_{j=1}^{m} 2 x_{j i} r_{j}$ and $b=\sum_{j=1}^{m} 2 x_{j i}^{2}$.

